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Preface

The following set of notes is a product of a reading project under Prof. Amit Kuber at
IIT Kanpur, whose guidance has been invaluable in the making of these notes, as he
helped me with understanding the material and provided feedback on the writing
and contents of these notes.

The main goal is to provide a quick run-through of Model Categories and some dis-
cussion of the Model Structure on Top and its connection with the Model Structure
on the category of simplicial sets. The first chapter, providing motivational prereq-
uisites from topology, is inspired by Peter May’s A concise course in Algebraic Topol-
ogy[2] and the rest of the content for these notes is heavily inspired by Mark Hovey’s
Model Categories[1].

Additional references for the topics are provided in the bibliography, [3] is another
popular book on Model Categories, [5] includes classical homotopy theory and [4] is
for further reading.
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Chapter 1

Motivation: Some classical homo-
topy theory

1.1 A convenient category for homotopy theory

One of the main issues we encounter when we work with Top is that the following
does not hold:

Top(X ×Y , Z ) ' Top(X , Z Y )

To rectify this, we work with a subcategory that we shall call CGTop. First, some
preliminary definitions:

Definition 1.1. We call a space X a k-space if for every compact Hausdorff space K ,
and every map g : K → X , g−1(A) closed in K =⇒ A is closed in X.

Definition 1.2. We call a space X weak Hausdorff if for every compact Hausdorff
space K , and every map g : K → X , g (K ) is closed in X.

The objects in CGTop are spaces which are both k-spaces and weak Hausdorff. Mor-
phisms are just continuous maps between them. Note that Haudorff spaces, locally
compact space are inside CGTop.

We have the k-ification of a topological space X , called k X , defined as follows: k X
is the same as X as a set. A subset of k X is closed if its intersection with compact
Hausdorff subsets of (the original topology on) X is closed (in the original topology
on X).

We denote the product of X and Y in this new category by X ×CG Y = k(X ×Y ). We
also imbue the function space the k-ification of the compact-open topology. Finally,
we have the following property:

CGTop(X ×CG Y , Z ) ' CGTop(X , Z Y )

We shall now denote ×CG simply by × as we will exclusively work with CGTop. In
particular, a homotopy X × I → Y is simply a map X → Y I .
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1.2 Cofibrations

Definition 1.3. A map i : A → X is called a cofibration if for every space Y , and maps
f ,h making the following diagram (a) commute, there exists a map h̃ such that the
diagram retains commutativity.

A A× I A Y I

Y

X X × I X Y

(a) (b)

i

i0

i×i d
h

i

h

p0

ĩ0

f

h̃

f

h̃

(b) portrays an equivalent formulation using the new way of writing a homotopy, as
described above.
Now, consider the mapping cylinder

Mi = X ∪i A× I

Replacing Y in the above diagram with Mi , and f and h with the respective pushout
maps, we see that if there exists a map r : X × I → Mi making the diagram commute,
then i is a cofibration since for any Y and f and h as above, by the pushout property,
there exists a map Mi → Y whose composite with r gives us the required map. An-
other important fact, whose proof we omit, is that cofibrations are exactly closed in-
clusions where the subspace is a Neighbourhood Deformation retract(NDR). That
is, there exist a neighbourhood A ⊂V ⊂ X , such that V deformation retracts to A.
This leads us to the following lemma:

Lemma 1.1. Every map can be expressed as a composition of a cofibration and a
homotopy equivalence.

Proof. For a map f : X → Y , it can be checked that the following splitting satisfies
the above criterion

X
j−→ M f

r−→ Y

where j (x) = (x,1) and r (x, s) = f (x) and r (y) = y

Another lemma, which we shall see in a different setting, but omit the proof here:

Lemma 1.2. Cofibrations are closed under pushouts. That is, in the pushout dia-
gram, if i is a cofibration, so is j .

A B

X Y

i j
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1.3 Fibrations

Most of the statements in this section are analogues of ones above, so we leave out
quite a few details.

Definition 1.4. A surjective map p : E → B is called a fibration if for every space Y ,
and maps f ,h making the following diagram (a) commute, there exists a map h̃ such
that the diagram retains commutativity.

E E I Y E

Y

B B I Y × I B

(a) (b)

p

p0

p I i0

f

p
h̃

h

f

p̃0 h

h̃

A construction dual to that of the mapping cylinder is the mapping path space

N p = E ×p B I

and now we care about the existence of a function N p → E I .

Example 1.1. Fiber bundles, in particular, covering spaces, are fibrations.

Lemma 1.3. Every map can be expressed as a composition of a homotopy equivalence
and a fibration.

Proof. For a map f : X → Y , the splitting in this case is

X → N f → Y

Lemma 1.4. Fibrations are closed under pullbacks.

We now have a nice theorem relating the two notions that we have just explored.

Theorem 1.1. If i : A → X is a cofibration, B is a topological space, then the map

B i : B X → B A

is a fibration.
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Chapter 2

Model Categories

Some preliminary definitions:

Definition 2.1. Let f : A → B , g : X → Y be morphisms in a category C. f is called a
retract of g if there exist maps i1, i2, j1, j2 such that the following diagram commutes
and the horizontal compositions are the identity morphisms.

A X A

B Y B

i1

f

j2

g f

i2 j2

In particular, in the category M ap C, where objects are morphisms of C, and mor-
phisms of M ap C are of the form i = (i1, i2) as above, we have i : f → g and j : g → f
such that j ◦ i = i d f .

Definition 2.2. We say the morphisms i has the left lifting property(LLP) with re-
spect to a morphism p or equivalently that p has the right lifting property(RLP)
with respect to i if for all morphisms f , g such that the diagram commutes, there
exists a lift h such that the diagram retains commutativity.

A E

X B

i

f

p

g

h

Definition 2.3. (α,β) is called a functorial factorization for C if α,β are functors
M ap C → M ap C such that for every morphism f ,

f =β( f )◦α( f )
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With this, we can finally begin to define a model category.

Definition 2.4. A model structure on a category C is a collection of three subcat-
egories W,F and COF, (which stand for weak equivalences, fibrations and cofibra-
tions respectively) along with two functorial factorizations (α,β) and (γ,δ) which
satisfy the following properties:

• (2-out-of-3 property) If for morphisms f and g , f g is defined and if two out of
f , g and f g are weak equivalences, then so is the third.

• W,F,COF are closed under retracts

• Trivial cofibrations (morphisms which are both weak equivalences and cofi-
brations) have the LLP with respect to all fibrations. Similarly, cofibrations
have the RLP with respect to all trivial fibrations.

• For every morphism f , α( f ) is a cofibration, β( f ) is a trivial fibration, γ( f ) is a
trivial cofibration and δ( f ) is a fibration.

C is said to be a model category if it has a model structure and it admits small limits
and colimits.

A simple consequence is that initial and terminal objects exist in a model category.

Example 2.1. For any category C with small limits and colimits, we can let one of
the classes of morphisms be all isomorphisms and the rest are all morphisms.

Example 2.2. For Set, we can consider one possible model structure: Every map is
a weak equivalence, cofibrations are exactly all injections and fibrations are exactly
all surjections.

For any model category C, we have the dual category DC, with the following dual
structure: weak equivalences are the same in both categories, cofibrations and fi-
brations are swapped. α and δ are swapped, so are β and γ. So, theorems proven for
cofibrations can be dualized for fibrations.

Definition 2.5. An object X is called cofibrant if the unique map from the initial
object is a cofibration. Dually, an object Y is called a fibration if the unique map to
the terminal object is a fibration.

Given a map 0 → X , we can split it into a cofibration followed by a trivial fibration
0 → QX → X . The functor Q is called the cofibrant replacement functor. Similarly,
we can define R, the fibrant replacement functor.
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One encounters Top∗ quite frequently in homotopy theory, so it is somewhat natu-
ral to ask for a model structure induced on C∗ 1 by a model structure on C. It turns
out to be pretty intuitive: f is a weak equivalence/ fibration/ cofibration iff U f is a
weak equivalence/ fibration/ cofibration respectively, where U : C∗ → C is the for-
getful functor sending (X , v) to X .

The following lemma is simple to prove, but turns out to be quite useful.

Lemma 2.1 (Retract Argument). If f = pi and f has the LLP with respect to p, then
f is a retract of i . Dually, if f has the RLP with respect to i , then f is a retract of p.

Proof. The first part is immediate from the following diagrams:

X Z X X X

Y Y Y Z Y

f

i

p f i fr

r p

One interesting thing to note is that the definition of a model structure is overdeter-
mined. Indeed, we can define the class of cofibrations and trivial cofibartions using
fibrations and trivial fibrations. This is encompassed in the following lemma:

Lemma 2.2. f is a cofibration iff f has the LLP with respect to all trivial fibration.
Dually, f is a trivial cofibration iff f has the left lifting property with respect to all
fibrations.

Now, we prove something that we promised in the first chapter.

Lemma 2.3. Cofibrations are closed under pushouts

Proof. Say f is a cofibration and g is a pushout of f . If p is a trivial fibration, and we
have i and j such that the following diagram commutes,

X Z E

Y W B

f g

i

p

j

then we have a lift Y → E since f is a cofibration. The lift W → E exists by the
pushout property. Hence g has the LLP with respect to p.

1where C∗ the category consisting of objects of the form (X , v) where X is an object of C and v (which
is called a basepoint) is a morphism from the terminal object to X . One can see how this works out in the
case where C = Top.
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We now have an important lemma due to Ken Brown. This works in a slightly more
general setting, however we will settle for the case where our category is a model
category.

Lemma 2.4 (Ken Brown). Suppose C is a model category and D is a category with
a subcategory of weak equivalences which satisfies the two out of three axiom. Sup-
pose F : C → D is a functor which takes trivial cofibrations between cofibrant objects
to weak equivalences. Then F takes all weak equivalences between cofibrant objects
to weak equivalences. Dually, if F takes trivial fibrations between fibrant objects to
weak equivalences, then F takes all weak equivalences between fibrant objects to weak
equivalences.
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Chapter 3

The Homotopy Category

An isomorphim is the standard notion of an equivalence. What should one do if
one wants to introduce a new notion of equivalence, and study the objects under
consideration under this new notion? A standard example, of course, is studying
topological spaces upto (weak) homotopy equivalences.
Our strategy will be to construct a new category where these "weak" equivalences
are in fact isomorphisms.
So given a model category C, we construct the homotopy category HoC by consid-
ering the free category generated by the morphisms in C and w−1 for every w in W.
Essentially, HoC has the same objects as C and its morphisms are chains alternating
between morphisms in C and w−1. Let γ : C → HoC be the functor which is identity
on the objects and sends morphism to the corresponding singleton chains.

HoC is in some sense the "smallest" category where we have our weak equivalences
inverted. In fact, the isomoprhisms in HoC are exactly weak equivalences in C or
their inverses. This is captured in the following lemma, which captures the univer-
sal property:

Lemma 3.1.

• If F : C → D is a functor which sends weak equivalences to isomorphisms, then
∃! HoF : HoC → HoD such that HoF ◦γ= F .

• If δ : C → E is a functor which sends weak equivalences to isomorphisms and
satisfies the above universal property, then ∃! F : HoC → E such that Fγ= δ.

• There exists a categorical isomorphism DHoC ∼= the subcategory of DC with func-
tors which send weak equivalences to isomorphisms.

We denote by Cc the subcategory of cofibrant objects. We similarly define Cf and
Ccf. The next lemma tells us that the study of HoC can often be reduced to the study
of a simpler subcategory.

Lemma 3.2. The following inclusions are categorical equivalences

HoCcf −→ HoCc −→ HoC

HoCcf −→ HoCf −→ HoC
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A different approach would be to define a notion of homotopy in our model cat-
egory, which will help us define a homotopy equivalence. Results and definitions
here will closely mirror the ones that we see in the case of topological spaces.

Definition 3.1.

• A cylinder object for B is a factorization of the codiagonal map B tB → B into

B tB
i0+i1−−−→ B ′ s−→ B , where the first map is a cofibration and the second is a

weak equivalence. The canonical cylinder object which we get from one of
the functorial factorizations is denoted by B × I ; this is what we are used to
when it comes to topological spaces.

• A path object for X is a factorization of the diagonal map X → X × X into

X
r−→ X ′ p0,p1−−−−→ X ×X , where the first map is a weak equivalence and the second

is fibration. Analogously, The canonical path object is denoted by X I

With this, we can go on to define left and right homotopies. Let f and g be two maps
B → X .

Definition 3.2.

• A left homotopy between f and g is a morphism H : B ′ → X such that Hi0 = f
and Hi1 = g .

• A right homotopy between f and g is a morphism K : B → X ′ such that p0K =
f and p1K = g .

Obviously, these are dual notions, so it is enough for us to focus on one of these.
Left homotopies satisfy properties that we expect them to (at least in most cases).
They are preserved under left composition, and when X is fibrant, they are pre-
served under right composition. When B is cofibrant, this is an equivalence relation
and gives a right homotopy between f and g .

These results give us the right to talk about the quotient category Ccf/ ∼ under the
homotopy equivalence relation. As one would want, we have the fact that the no-
tions of homotopy equivalences and weak equivalences coincide in Ccf, albeit not in
C.

We summarize some of the above results and add some more in the next theorem:

Theorem 3.1.
• The inclusion Ccf → C induces the categorical equivalence

Ccf/ ∼∼= HoCcf
∼= HoC

• There are natural isomorphisms

C(QR X ,QRY )/ ∼∼= HoC(γX ,γY ) ∼= C(RQX ,RQY )/ ∼
• γ : C → HoC identifies left homotopic maps

• If f is morphism in C such that γ f is an isomorphism, then f is a weak equiva-
lence.
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Chapter 4

Quillen Functors and Quillen ad-
juctions

Quillen functors and Quillen adjuctions are functors and adjunctions which respect
the homotopic structures of model categories. These will often help us study ho-
motopic structures of a certain category in a different setting, which could make the
problem simpler or offer more insight.

Definition 4.1. Let C and D be model categories.

• A functor F : C → D is called a left Quillen functor if F is a left adjoint and pre-
serves cofibrations and trivial cofibrations.

• A functor U : D → C is called a right Quillen functor if U is a right adjoint and
preserves fibrations and trivial fibrations.

• An adjunction (F,U ,φ) : C → D is called a Quillen adjunction if F is a left Quillen
Functor.

The adjunction induces the unit mapηX : X →U F X and the counit map εY : FU Y →
Y , which we can use to prove that if (F,U ,φ) is a Quillen adjunction, then U is a right
Quillen functor.
We have can compose Quillen adjunctions, namely if we have the Quillen adjunc-
tions (F,U ,φ) and (F ′,U ′,φ′) their composition is

(F ′ ◦F,U ◦U ′,φ◦φ′)

With composition defined, we can see that in some sense, these act as morphisms
of model categories.

We now want to look at how Quillen functors induce functors between the homo-
topy categories.

Definition 4.2. If F : C → D is a left Quillen functor, we define the total left derived

functor LF : HoC
HoQ−−−→ HoCc

HoF−−−→ HoD.
Given a natural transformation τ : F → F ′, we define the total left derived transfor-
mation Lτ = Hoτ◦HoQ. That is, (Lτ)X = τQX .

We can similarly define the dual notions of total right derived functors and transfor-
mations, which we denote by R.
While the total left left derived transformation is functorial, the total left derived
functor is not. However it is "almost functorial," in the sense that it is associative
upto a natural isomorphism. They also induce an adjunction between homotopy

12



categories given an adjunction between two model categories, that is, L(F,U ,φ) =
(LF,RU ,Rφ).

Definition 4.3. A Quillen adjunction (F,U ,φ) is called a Quillen equivalence if for
all cofibrant X in C and fibrant Y in D, f : F X → Y is a weak equivalence iff φ( f ) :
X →U Y is a weak equivalence.

If we want the notion of a Quillen equivalence to be an "equivalence upto homo-
topy", then we should expect the induced adjunction between the homotopy cat-
egories to be a categorical equivalence. Indeed, this is captured in the following
lemma, which also gives a another characterization of a Quillen equivalence.

Lemma 4.1. The following are equivalent

• (F,U ,φ) is a Quillen equivalence.

• X
ηX−−→U F X

UrF X−−−−→U RF X is a weak equivalence for all cofibrant X and FQU Y
F qU Y−−−−→

FQY
εY−→ Y is a weak equivalence for all fibrant Y .

• L(F,U ,φ) is an adjoint equivalence of categories.

The above lemma implies that we can refer to a Quillen equivalence just by its asso-
ciated left Quillen functor (or the right Quillen functor). One can check that Quillen
equivalences satisfy the 2-out-of-3 property, lending more credence to the notion of
Quillen adjunctions as morphisms of model categories and Quillen equivalences as
weak equivalences.

We end this chapter with a criterion for Lτ to be a natural isomorphism.

Lemma 4.2. Suppose τ : F →G is a natural transformation between left Quillen func-
tors. Then, Lτ is a natural isomorphism iff τX is a weak equivalence for all cofibrant
X .
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Chapter 5

Simplicial Sets

The goal of this chapter is to give a glimpse of the model structure of simplicial sets,
which turns out to be Quillen equivalent to Top where the weak equivalences are ex-
actly the weak homotopy equivalences. This is useful since simplicial sets are com-
binatorial in nature and are often simpler to work with than topological spaces.

Definition 5.1. We have the category∆where objects are sets of the form {0,1, . . . ,n}
which we denote by [n]. The morphisms are weakly order preserving maps. We
have the coface maps which are the injective morphisms d i : [n − 1] → [n] which
don’t have i in their image. Similarly, we have the codegeneracy maps which are the
surjective morphisms si : [n] → [n −1] which send i and i +1 to the same element.

One can show that any morphism can be written as as a composition of coface maps
followed by a composition of codegeneracy maps.

For any category C, we have the category of simplicial objects C∆op
. In particular, if

C = Set, we call the it the category of simplicial sets, denoted by SSet.

For a simplicial set K , we denote K [n] by Kn , which we call the n-simplices of K.
For any element of Kn , we say that its dimension is n. We have the face maps
di : [n] → [n − 1] and the degeneracy maps si : [n − 1] → [n]. These are analogous
to the maps we define for simplicial complexes in Top.

A simplex obtained from the successive applications of face maps to x is called a
face of x. Similarly, a simplex obtained by the successive applications of degeneracy
maps to x is called a degeneracy of x. For any x ∈ Kn , there exists a unique y of least
dimension such that y is a degeneracy of x.

Example 5.1. For each n ∈ N, we have the simplicial set ∆[n] which sends [k] to
∆([k], [n]).

Keeping simplicial complexes in mid we can define the boundary δ∆[n] whose non-
degenerate k-simplices correspond to nonidentity injective order-preserving maps
[k] → [n]. One can similarly define the r -horn Λr [n]
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We now have a lemma which will finally help us construct an adjunction that turns
out to be the Quillen equivalence that we mentioned above.

Lemma 5.1. Suppose C has small colimits. Then there exists a categorical equivalence
C∆ ∼= category of adjunctions SSet → C.

We have a functor ∆→ Top which sends [n] to the standard n-simplex. The above
lemma tells us that there is a corresponding adjunction (| |,Si ng ,φ). We call | | the
geometric realization functor.

We briefly define the model structure on SSet, though we will be unable to prove
that it is in fact a model structure.

Definition 5.2.
I = {δ∆[n] →∆[n] : n ≥ 0}, where the maps are the canonical injections.
J = {Λr [n] →∆[n] : n > 0,0 ≤ r ≤ n}, where the maps are the canonical injections.

The class of fibrations is the class J − i n j , that is, the class of maps that has the RLP
with respect to every map in J .
The class of cofibrations is the class (I − i n j )−pr o j , that is, the class of maps that
has the LLP with respect to every map in I − i n j .

While we are unable to prove that the adjunction above is indeed a Quillen equiva-
lence, we provide the following observations to support our statement:
f is a weak equivalence in SSet iff the geometric realization | f | is a weak equivalence
in Top.

We have that |∆[n]| = Dn and that |δ∆[n]| = Sn−1, so we can see that the maps
in J − i n j correspond to Serre fibrations (maps which have RLP with respect to
Sn−1 ,→Dn) which are the fibrations in the model structure for Top that we are con-
sidering. Similarly maps in (I − i n j )− pr o j correspond to the cofibrations in the
model structure for Top.
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