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0 Introduction

While we have seen an analytic approach to the Index Theorem, there is another approach
to it using methods from algebra and topology. This approach, which uses K -theory, can
often be more insightful and conceptual, though the heat kernel approach brings it's own
unique geometric perspective. It is a curious mathematical phenomenon as to how two
wildly di�erent methods can be powerful enough to prove the the powerful Index Theorem!

The Bott Periodicity theorem comes in many forms and is of varying interests to mathe-
maticians. While Bott's original formulation of the theorem was about the periodicity of
homotopy groups of the in�nite unitary, orthogonal and spin groups, the modern formula-
tion of the complex (unitary) case helps us prove that (complex) K -Theory can be made
into a generalized cohomology theory. The periodicity theorem rears its head multiple
times in the study of index theory, and we'll try to give a good picture of how it comes up.

We'll look at a K -theoretic formulation of the Index Theorem, and see how it relates to
the classical statement. The K -theoretic restatement is much more pleasing to the eye,
and the translation to the classical version will also show us how the Todd genus comes
into play.

Even though we start from the de�nitions of K-Theory, we will be liberal with the use of
some facts outside of the scope of this essay, as long as it aids in motivating the concepts
at hand. We'll also assume some knowledge of basic homotopy theory. This essay is not
supposed to be rigorous or detailed, but aims to provide a broad outline of the techniques
and ideas used in this approach.
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1 Complex K -Theory

Recall that for a compact Hausdor� topological space X, the 0th K -group or its K -theory
is

K(X) = K0(X) = G(V ect(X)).

Here, V ect(X) is the set of isomorphism classes of (complex) vector bundles over X. It
is an abelian monoid with respect to ⊕, and G adds formal inverses to this operation
making K(X) an abelian group. Moreover, ⊗ makes K(X) a ring.

What does an element of K(X) look like? Well, any vector bundle E → X sits in there as
[E] or simply as E. An arbitrary element looks like [E]− [F ], and we call anything of this
form a virtual (vector) bundle. In particular, we denote the trivial bundle of rank n by Cn.

Remark. By a theorem of Atiyah and (independently discovered by) Jänich we have that

K(X) ∼= [X,F ]

where F is the space of Fredholm operators on an in�nite dimensional, complex, separable
Hilbert space H (which are all isomorphic). The topology on F is given by the operator
norm and [X,F ] is the set of homotopy classes of maps X → X. This already hints at
how K -theory is weaved into the story of the Index Theorem.

Why do we want the compact Hausdor� condition on X? It comes down to the follow-
ing fact: every vector bundle over a compact Hausdor� space is a direct summand of a
trivial bundle. The idea here is to embed the bundle into X × Cn by patching it along
a �nite trivializing cover of X. Once we have an embedding, we can take the orthogonal
complement to give us the other direct summand.

With this fact in hand, let's look at an element of K(X), say, E − F . We have some
bundle G such that F ⊕G = X × Cn. Then,

E − F = E +G− F +G = E +G− (X × Cn) = Ẽ − Cn.

Dually, we could have gotten E − F = Cn − F̃ . In a similar vein, we can prove that
[E] = [F ] i� there is some n such that E + Cn = F + Cn.

Keeping the pullback of vector bundles in mind, we see that K is a contravariant functor,
in particular, given f : X → Y , we get f ∗ : K(Y ) → K(X). In fact, K is a homotopy
functor, i.e, if X is homotopy equivalent to Y , then K(X) ∼= K(Y ).

Example 1.1. Clearly, the vector bundles over a point (∗) are just Cn. We also have
homotopy invariance, so

K(∗) ∼= Z.
Example 1.2. It turns out the every (complex) vector bundle over S1 is trivial. One
can prove this by showing that every such bundle comes from a bundle over the interval,
which is contractible. Thus,

K(S1) ∼= Z.
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2 The clutching construction

The clutching construction is a way to glue together two vector bundles as long as you
have the appropriate gluing data for the intersection of the base spaces. While it is often
used in the special case of a sphere viewed as two disks glued along the edges, there is a
more general construction:

Theorem 2.1. Suppose X = X0

⋃
X1 is a union of two compact spaces and let A =

X0

⋂
X1 such that X = X0

∐
AX1. Let Ei → Xi be vector bundles and φ : E0|A → E1|A

be an isomorphism. Then, we get a bundle

E0 ∪φ E1 → X

We'll look at a special case where X1 ⊂ X0. Now, suppose we have a bundle E → X and
A ⊂ X is a closed subspace with a trivialization α : E|A → Cn. Consider the equivalence
relation on E given by e ∼ e′ if α(e) = α(e′). This gives a map E/α = E/ ∼ → X/A.
We have some straightforward lemmas:

Lemma 2.1. E/α → X/A is a vector bundle. Furthermore, if q : X → X/A is the

quotient map, then q∗E/α ∼= E.

The key fact to prove here is that we have a local trivialization around A/A. This follows
from a fact from the theory of vector bundles, which allows us to extend an isomorphism
of vector bundles on a closed set to a neighbourhood of the closed set.

Lemma 2.2. The isomorphism class of E/α depends only on the homotopy class of α.

Theorem 2.2. Let A ⊂ X be closed and contractible. Then, we have a bijection q∗ :
V ect(X/A)→ V ect(X). In particular, K(q) : K(X/A)→ K(X) is an isomorphism.

Proof. Suppose E → X is a vector bundle. Since A is contractible, E|A is trivial. Any two
trivializations are the same upto a composition by an automorphism of Cn, i.e., GLn(C).
Since GLn(C) is path connected, any two trivializations are homotopic.

Thus, we get a map V ect(X) → V ect(X/A) by E → E/ ∼. This is an isomorphism by
Lemma 2.1.

For such an isomorphism to hold for ordinary cohomology, one requires further conditions
like A→ X being a co�bration or A being an NDR (neighbourhood deformation retract).
In this sense, K-theory acts more nicely than ordinary cohomology.
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3 Homotopical and cohomological properties ofK -theory

In this section, all spaces are compact Hausdor� unless speci�ed otherwise.

We mentioned how we want to make K -Theory into a generalized cohomology theory, so
in that spirit, we de�ne the reduced K-Theory of a pointed space (X, x):

K̃0(X) = ker(K0(X)→ K0(x)).

This gives us that K0(X) = K̃0(X)⊕Z. Similar to ordinary cohomology, we get an exact
sequence

K̃0(X/A)→ K(X)→ K(A)

using Lemma 2.1.

Moving on to pointed spaces, which we denote as (X, x), recall the the notions of the wedge
product, smash product and cone, resp: X∨Y = X×{y}∪{x}×Y , X∧Y = X×Y/X∨Y
and CX = X∧[0, 1] (which is contractible). The mapping cone of a map of pointed spaces
f : Y → X is Cf = X ∪f CY .

Given an inclusion of a closed subspace i : A → X, we get the Puppe sequence (an LES
of pointed spaces)

A→ X
j−→ Ci

k−→ Cj → Ck . . .

which induces an exact sequence

. . . K̃0(Cj)→ K̃0(Ci)→ K̃0(X)→ K̃0(A).

Since any cohomology theory needs to satisfy the suspension axiom, we de�ne

K̃−n(X) := K̃0(ΣnX).

If X is unpointed, then we can de�ne

K̃−n(X) := K̃0(ΣnX+).

where X+ is obtained by adjoining a free basepoint to X.

From this, we obtain an LES of K -Theory,

K̃−n(X/A)→ K−n(X)→ K−n(A) . . . K−1(A)→ K̃0(X/A)→ K0(X)→ K0(A).

In particular, setting A = ∗ gives us that K−n(X) ∼= K̃−n(X) ⊕ K−n(∗) ∼= K̃−n(X) ⊕
K0(Sn).
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3.1 Relative K-Theory

From the above discussion, one might be tempted to de�ne K0(X, Y ) as K̃0(X, Y ) and
this indeed works. However, we also provide an alternate characterization which will be
useful.

De�nition 3.1. Let Y ⊂ X be a closed subspace of a compact Hausdor� space. A K -
cyckle on (X, Y ) is a triple (E,F, φ) such that E,F → X are bundles and φ : E → F
is a bundle map with φ|Y being an isomorphism. (E,F, φ) is acyclic if φ is an isomorphism.

An isomorphism of K -cycles (E0, F0, φ0) ∼= (E1, F1, φ!) is a pair of isomorphisms (α :
E0 → E1, β : f0 → F1) such that φ1 ◦ α = β ◦ phi0.

A concordance between two K -cycles as above is a K -cycle on (X × I, Y × I) such that
the restriction at endpoints of the interval gives us the two K -cycles we started with.
Let E(X, Y ) be the monoid of concordance classes and D(X, Y ) be the monoid of concor-
dance classes with an acyclic K -cycle. Then we de�ne

K(X, Y ) :=
E(X, Y )

D(X, Y )
.

3.2 K-Theory with compact support

If one wants to talk about Kgroups for non-compact manifolds, we reduce it the compact
case by taking the one point compacti�cation. Thus for a locally compact Hausdor� space
X, we de�ne

Kc(X) := K(X+,∞) ∼= K̃(X+).

Equivalently, we could de�ne it using K -cycles, with the slight change that for (E,F, φ),
we want φ to be an isomorphism outside of a compact set. Again, we would de�ne it as
the quotient of concordance classes with acyclic ones.

Once we have that, we can de�ne

K−nc (X) := Kc(X × Rn)

which mirrors our approach for the compact case (since (Rn)+ ∼= Sn).

Finally, we get an LES for the compactly supported K -Theory:

. . . K−nc (X − Y )→ K−nc (X)→ K−nc (Y ) . . .

With the stage set up, we can �nally move...
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4 Towards Bott Periodicity

The �rst step towards Bott Periodicity is the Bott class. Suppose we have a map α :
Sn−1 → GLm(C). We get a bundle homomorphism

Dn × Cm → Dn × Cm givn by (x, v) 7→ (x, |x|α(x/|x|)v).

This gives a map
πn−1(GLm(C)→ K(Dn, Sn−1).

For n = 2,m = 1, the image of the conjugate map is called the Bott class, b, and it
lives in K(D2, S1). Alternatively, one could de�ne it as the dual of exterior algebra of C,
b = λ∗C ∈ Kc(C).

Doing the above (exterior algebra) construction for an arbitrary vector bundle V → X,
we get τV the Thom class. In particular, b = τC.

De�nition 4.1. Given two K -cycles (E0, E1, g) and (F0, F1, f) on (X,A) and (Y,B)
respectively, their cross product is de�ned as the following K -cycle on (X × Y,A×B):

(E0 ⊗ F0 ⊕ E1 ⊗ F1, E0 ⊗ F1 ⊕ E1 ⊗ F0, f#g :=
(
1⊗f g∗⊗1
g⊗1 −1⊗f∗

)
)

Finally for the famed theorem:

Theorem 4.1 (Bott Periodicity). Let X be locally compact. Then the map

βX : Kc(X)→ Kc(X × R2) given by x 7→ x#b

is an isomorphism.

We also have a generalization, which won't be too important for us, be is pretty important
in its own right:

Theorem 4.2 (Thom Isomorphism). Let X be a locally compact space and π : V → X
be a rank n bundle. Then the map

thK : Kc(X)→ Kc(V ) given by x 7→ π∗x#τV

Remark. Every generalized cohomology theory is represented by a spectrum, i.e, there is
a sequence of spaces En such that En+1

∼= ΣEn and the nth cohomology group is given
by [−, En]. For K -Theory, K(X) ∼= [X,BU × Z], where U = U(∞) = colim U(n) is the
in�nite unitary group and BU is its classifying space. Bott periodicity implies K2(X)
should be K(X) and more generally that BU × Z ' Ω2BU or equivalently, Ω2U ' U
where Ω is the loop space functor. From which we get the classical result that Bott proved,
i.e, πk+2(U) = πk(U). There are analogous periodicity results for the real( orthogonal) and
the spinor case, both of which have 8-fold periodicity. Thus the corresponding K -theories,
KO-theory and KSp-theory have 8-fold periodicity as well.
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4.1 A Brief Overview of the Proof of Bott Periodicity

There's a lot of work that needs to be done to prove this theorem, but out approach can
basically be broken into parts: what simple conditions do we need on a map to be an
inverse of β and how to �nd such a map.

The �rst is a formal algebraic "trick" due to Atiyah. We note the following facts about
β :

• βX is natural in X

• βX is Kc(X)-linear with left multiplication.

• β∗(1) = b

Atiyah's trick tells us that the fairly straightforward expectations from an inverse are in
fact enough to prove that it is an inverse

Theorem 4.3 (Atiyah's rotation trick). If for all compact Hausdor� X, we have αX :
Kc(X × R2)→ Kc(X) such that

• αX is natural in X

• αX is Kc(X)-linear

• α∗(b) = 1

then we can extend α to locally compact spaces and it is in fact the inverse of β

The proof of extending α to locally compact spaces is in terms of the one point com-
pacti�cation of the space. Showing that such a map is the inverse requires a fair bit of
algebraic manipulation and heavily using the ring structure of K(X).

Given this, �nding such an α is the hard part. The idea is to use the Toeplitz index
theorem:

Theorem 4.4. If f : S1 → C∗ is continuous, then Tf is Fredholm and Index(Tf ) =
−deg(f).

whose baby case we've already seen for f(z) = zk.

The idea then is to replace both the domain and codomain of αX with naturally isomor-
phic objects which are amenable to a parametrized version of the Toeplitz Index theorem.

But where does the analysis come in? We actually want to replace the codomain of α with
what is essentially a concordance class of Fredholm families, which are cycles where the
bundles are Hilbert bundles and the map is locally a Fredholm operator. This is where
the parametrized Toeplitz index theorem comes into play.

While we have brushed past almost all technicalities, we reiterate that a substantial
amount of work has to be done to �gure out the whole proof.
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5 Wrapping up the story: the Index Theorem

The case we want to look at is somewhat more general than the case of Dirac operators

5.1 Elliptic Di�erential Operators

De�nition 5.1. A di�erential operator of order k between two smooth vector bundles
E0, E1 → M is a map P : Γ(M,E0) → Γ(M,E1) such that P is local and on a trivial
open set, it looks like

f 7→
∑
|I|≤k

AI
∂I

∂xI
f

where I is a multi-index. We denote the vector space of such operators by Diffk(E0, E1).

For y ∈ M, η ∈ T ∗yM, e ∈ (E0)(y), choose f : M → R so that f(y) = 0 and f ∗ = η and
choose s ∈ Γ(M,E0) with s(y) = e. The symbol of P is de�ned as

smbk(P )(y, η)(e) =
ik

k!
P (fks)(y) ∈ E1(y).

If we look at it as a function of e, then it is in fact a homogeneous polynomial of degree
k in η.

We say that P is elliptic if for all x ∈ M , the map smbk(P )(η) : (E0)x → (E1)x is
invertible. In particular, every Dirac operator is elliptic.

Thus our formulation of the Index Theorem is about the index of elliptic di�erential op-
erators.

Let M be a closed Riemannian manifold and V,W → be complex vector bundles and
D : Γ(M,V ) → Γ(M,W ) be an elliptic di�erential operator of order k. Let DM and
SM be the unit disc and sphere bundle inside the cotangent bundle π : T ∗M → M .
Then, (π∗V, π∗W, smbk(D)) is a K -cycle and the resulting class σ(D) ∈ K0(DM,SM) ∼=
K(T ∗M) is called the symbol class.

5.2 The Index Theorem

Let M be embedded in Rn and U be an open tubular neighbourhood of M . Then TU is
an open tubular neighbourhood of TM in TRn. The topological index, tind, is the map
Kc(TM)→ Z de�ned as

tind : Kc(TM)
thK−−→ Kc(TU)→ Kc(R2n = TRn)

Bott∼= Z
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Then, the Index Theorem is -

Theorem 5.1 (Atiyah-Singer Index Theorem).

ind(D) = tind(σ(D))

One can look at the index as a map from the K -theory, which sends the symbol to the
index, so the Index Theorem can be restated as the fact that the analytic index and the
topological index as maps from Kc(TM)→ Z are the same map. This is a really pleasant
and succinct way of looking at the the Index theorem! If M = R2, the theorem just boils
down to Bott Periodicity.

Remark. There's another approach where we de�ne K -homology and the Index Theorem
becomes a statement regarding the pairing of K -homology and K -Theory which is the
K -theoretic version of Poincaré duality! In some sense, this is a very natural way through
which we can look at the Index Theorem. A more general way to tackle this is via the
K -theory and K -homology of C∗−algebras which leads to some powerful generalizations.

How does this relate to the cohomological version of the Index Theorem? By using the
chern character! We get the following diagram:

Kc(TM) Kc(TU) Kc(TRn)

H∗c (TM) H∗c (TU) H∗c (TRn) R

thK

ch◦µ(νC) ch ch
β−n

thH
∫

Where thH is the cohomological version of the Thom map, H∗c is cohomology with compact
supports and µ is a factor added to make sure that the diagram commutes.
From this, we get

tind(x) =

∫
TM

ch(x)µ(νM ⊗ C).

µ is nothing but the Todd class, and further, if M is oriented and we let x = σ(D), we
can reduce it to

ind(D) = tind(D) = (−1)n(n−1)/2
∫
M

th−1H (ch(σ(D)))Td(TM ⊗ C).

Thus we see that the Todd class rears its head purely as an error factor while converting
a natural statement about K -Theory to mildly clumsy statement about ordinary coho-
mology!
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