
HILBERT’S 17th PROBLEM

HYTHAM FARAH,

SIDDHARTH GURUMURTHY,

TORIN CAREY

The following notes will provide the necessary background for, and the solution

of, Hilbert’s 17th problem. Emil Artin was the first to solve the problem in 1927 in

the affirmative [Art27], resulting in the following theorem:

Theorem 1 (Hilbert’s 17th problem). If f is a positive semidefinite rational func-

tion over a real closed field F , i.e. f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ F , then f

is a sum of squares of rational functions.

Though Artin was the first to prove this theorem, we shall present Abraham

Robinson’s proof in this document. His proof made heavy use of model theory

techniques, particularly, by exploiting the model theoretic properties of the theory

of real closed fields, which we shall henceforth denote by RCF. The proof follows

as an almost immediate consequence of the model-completeness of RCF and an

algebraic theorem about the ordering of real fields. These notes draw heavily from

David Marker’s Model Theory [Mar00].

1. Model Completeness of RCF

Before we provide a precise definition of RCF, we note that they key model

theoretic property we need for the proof is model completeness.

Definition 2 (Model Completeness). An L-theory T is model-complete, if M ≺ N
whenever M ⊆ N and M,N |= T .

Equivalently, T is model-complete whenever all embeddings are elementary em-

beddings. We recall that if a theory has quantifier elimination then it is model

complete, though the converse need not hold. Unfortunately, unlike the the-

ory of ACF, RCF does not have quantifier elimination in the language of rings

Lr = (+,−, · , 0, 1).

Theorem 3. Th(R) does not have quantifier elimination in Lr.

To prove the theorem we need a definition and some technical lemmas:

Definition 4. An L-theory T is strongly minimal if for any M |= T every definable

subset of M is either finite or cofinite.
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This definition is particularity useful for our purposes because of the following

lemma:

Lemma 5. Any field with quantifier elimination is strongly minimal.

Proof. Any atomic Lr-formula is of the form p(x) = 0 for a polynomial p(x) which

is satisfied by finitely many elements of the field. The set of elements satisfying

p(x) 6= 0 is cofinite, so any quantifier free Lr-formula is satisfied by a finite or

cofinite set of elements from the field. Thus if the field has quantifier elimination,

every set is algebraic and therefore the field is strongly minimal. �

But R is not strongly minimal as φ(x) = ∃z (z2 = x) defines an infinite co-infinite

definable set. Hence, by the Lemma, R cannot have quantifier elimination.

In fact, φ(x) is itself an instance of a formula that cannot be expressed without

quantifiers. However, if we expand our language by adding an order relation to

Lor = Lr ∪ {<}, we immediately see that:

(∃z z2 = x ∧ z > 0) ≡ (x > 0)

dissolving the quantifier. It turns out, that quantifier elimination is impeded solely

by statements which can be expressed by < instead. Fortunately, expanding the

language, does not add any new definable sets since:

(∃z z 6= 0 ∧ x+ z2 = y) ≡ (y > x)

So any condition expressible in Lr is expressible in Lor
Hence the strategy will be to show that the theory of R in Lor does have quantifier

elimination.

2. Formal Real Closed Fields and Orderings

We begin with a purely algebraic characterization of real fields:

Definition 6. A field F is:

• formally real or just real if −1 is not a sum of squares.

• real closed if it is formally real with no proper formally real algebraic ex-

tensions.

Examples of formally real fields include Q and R, of which only R is closed. We

define the notation ΣF 2 := {
∑
f2i , fi ∈ F} to be the subset of F which can be

written as sum of squares in F .

Note that being formally real implies the field has characteristic 0.

Definition 7. An ordered field is a field F with a total order < such that the

axioms

∀x∀y (x > 0 ∧ y > 0)→ (xy > 0)
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and

∀x∀y∀z (x < y)→ (x+ z < y + z)

hold. Note that x2 ≥ 0 for any x ∈ F as this follows for if x ≥ 0 or x ≤ 0. Therefore

in any ordering we must have ΣF 2 \ {0} as positive and −ΣF 2 \ {0} as negative.

Lemma 8. Let F be real and a ∈ F such that −a /∈ ΣF 2. Then F (
√
a) is real.

Proof. We may assume
√
a /∈ F otherwise it is trivial. Suppose F (

√
a) is not real,

then we have

−1 =
∑
i

(bi + ci
√
a)2 =

∑
i

b2i + 2
√
a
∑
i

bici + a
∑
i

c2i

with
∑
i bici = 0 as F (

√
a) is an F -vector space and

∑
i c

2
i 6= 0 as F is real. Thus

−a =

∑
i b

2
i + 1∑
i c

2
i

=

(∑
i

c2i

)(
1∑
i c

2
i

)2
(∑

i

b2i + 1

)
∈ ΣF 2

which is a contradiction. �

A key property of real fields that we will need for the proof of Hilbert’s 17th

theorem is about the ordering of real fields. If F is real closed, it has a unique

ordering thanks to the following lemma.

Lemma 9. Let a ∈ F \{0}. If F is real, then at most one of a and −a is a square.

If F is real closed, then exactly one of a and −a is a sum of squares.

Proof. Suppose both of a,−a ∈ ΣF 2 are a sum of squares, then

−1 =
−a
a

= a(−a)

(
1

a

)2

∈ ΣF 2

is a sum of squares, which is a contradiction to F being real. Suppose F is real

closed and neither of a or −a are a sum of squares, then we have the proper algebraic

extension F ⊂ F (
√
a) of real fields, which contradicts F being real closed. �

With this property, supposing F is real closed, we can define a unique ordering

as follows:

(1) x < y ⇐⇒ y − x is a non-zero sum of squares

Lemma 9 tells us that ΣF 2 ∪ −ΣF 2 = F , therefore the order is unique.

For real fields which are not closed, we will show that there are still orderings,

however, they are not unique. This will prove useful, since, to a certain extent we

can control our order relationship on real fields, as seen in the following theorem:

Theorem 10 (Ordering of Real Fields). Let F be a formally real field. If a ∈ F
and −a 6∈ ΣF 2 then there is an ordering of F where a > 0

To prove this theorem we will use the following lemma:
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Lemma 11. Let F be a real field. There there is an R ⊇ F a real closed algebraic

extension which we call a real closure of F .

Proof. Denote by F 3 F the poset1 of real algebraic extensions of F with inclusion.

Given any chain F0 ⊆ F1 ⊆ · · · , we have an algebraic extension ∪F =
⋃
i Fi of F .

Suppose ∪F were not real, then there would exist fi ∈ ∪F such that f21 + · · · +
f2n = −1, which would contradict FN being real for some FN containing f1, . . . , fn.

Therefore by Zorn’s lemma there exists maximal fields R in F . Such a maximal field

is real closed since by maximality we cannot extend it properly to a real field. �

Corollary 12. Every real field F has an ordering.

Proof. By Lemma 11, there exists a real closure R ⊇ F with embedding i : F → R.

We may define an order on F with x < y if and only if i(x) < i(y), where R is

ordered with the unique order on real closed fields. �

Now we can prove the desired theorem:

Proof of the Ordering of Real Fields. Since −a is not a sum of squares, we may use

Lemma 8 to obtain the inclusion of real fields i : F ↪→ F (
√
a). By the above

Corollary, F (
√
a) has an ordering, but all such orderings must have a > 0 since a

is a square in this field. By pulling-back the ordering to F , we obtain an order on

F with a > 0. �

Remark 13. Let F be a real closed field. The rational function field F (x) is real

since for any f ∈ F (x) \ F we have f2 /∈ F . What might an ordering on F (x) look

like? It would suffice to describe what the ordering of x is with respect to all other

elements of F . We may consider downards closed sets A ⊆ F where if a < b and

b ∈ A, then a ∈ A. We may then define a < x if a ∈ A and x < a is a ∈ F \ A.

Consider F = R. In the case of A = (−∞, 0] ⊂ R, we may consider x as a positive

infinitesimal element, since such an element would be less than all positive reals.

Likewise in the case of A = R, we may consider x as an infinite element.

As we saw earlier, real fields admit adjoining roots of elements in some cases.

We may infact adjoin any elements of odd degree.

Lemma 14. Let F be a field and α such that [F (α) : F ] is odd. Then F (α) is real.

Proof. Suppose not. Let a1, . . . , an ∈ F (α) \ {0} be such that a21 + · · ·+ a2n = −1.

Let m(x) be the minimal polynomial of α. We may consider ai as polynomials ai(x)

with deg ai(x) < degm(x) from the F -algebra isomorphism F [x]/〈m〉 ∼= F (α). In

F [x] we have
∑n
i=1 a

2
i (x) = −1 + h(x)m(x) where deg h(x) ≤ max(deg a2i (x)) −

degm(x) < degm(x) and with deg h(x) odd. Let h(x) = k(x)`(x) where k(x) is

1We can make this a set by constructing these extensions manually by successively adding roots
of polynomials to get extensions via transfinite induction.
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irreducible of odd degree, then
∑n
i=1 ai(x) = −1 in F [x]/〈k(x)〉. Let β be a root of

k(x), then for ai(x) 7→ ai under the F -algebra isomorphism F [x]/〈k(x)〉 ∼= F (β) we

have a21 + · · ·+ a2n = −1. Since [F (β) : F ] is odd and strictly less than [F (α) : F ],

we may repeat this process finitely many times to obtain c1, . . . , cn ∈ F with

c21 + · · ·+ c2n = −1, contradicting that F is real. �

The definition of real closed fields given above is not conducive to model theoretic

techniques. To axiomatize real closed fields in first order logic, we need the following

characterization, whose proof is quite technical and thus we won’t give a complete

proof.

Theorem 15 (Artin). The following are equivalent:

(1) F is real closed;

(2) F(i) is algebraically closed;

(3) For every a ∈ F\{0} exactly one of a or −a is a square and every polynomial

of odd degree has a root in F .

The main part of the Theorem which we utilise is (1) ⇔ (3), we can prove one

direction of this. The proof of (3)⇒ (1) goes through (2).

Proof (1)⇒ (3). Suppose F is real closed. Lemma 9 already tells us that for every

a ∈ F \ {0}, exactly one of a or −a is a square. Let f(x) ∈ F [x] be an odd degree

polynomial. Let α be a root of f(x), then the algebraic extension F (α) ⊇ F is real.

Since F is closed, we must have α ∈ F for which proves f(x) has a root in F . �

We now formally define RCF as the theory in the language Lor axiomatized by:

(1) Ordered field axioms

(2) for each n ≥ 1 the axiom: ∀x1 . . . ∀xn x21 + ...+ x2n + 1 6= 0

(3) ∀x x > 0 =⇒ ∃y y2 = x

(4) for each n ≥ 0 the axiom: ∀x0...∀x2n∃y y2n+1 +
∑2n
i=0 xiy

i = 0, that is,

every odd degree polynomial has a root.

Of course, for any F |= RCF we have that F is a formally real closed field since

1 and 2 imply F is a real field with 3 and 4 implying that F is real closed by

Theorem 15.

3. Quantifier Elimination of RCF

We begin with the following definitions:

Definition 16. We say that a theory T has algebraically prime models if for any

A |= T∀ there is M |= T and an embedding i : A −→ M such that for all N |= T

and embeddings j : A −→ N there is h : M −→ N such that j = hi.
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Definition 17. If M,N |= T and M ⊆ N , we say that M is simply closed in

N and write M ≺s N if for any quantifier free formula φ(v̄, w) and any ā ∈ M , if

N |= ∃w φ(ā, w) then so does M.

To show that RCF has quantifier elimination we will make use of the following

test:

Theorem 18. Suppose that T is an L-theory such that: i) T has algebraically prime

models and ii) M ≺s N whenever M ⊆ N are models of T . Then, T has quantifier

elimination.

To prove that RCF has quantifier elimination it is therefore sufficient to check

that properties i) and ii) hold for RCF.

Let’s start working towards the proof of i).

Lemma 19. If (F,<) be an ordered field and 0 < x ∈ F be a non-square. Then

we can extend the order to F (
√
x).

Proof. The order we want is essentially what we would expect for F = Q. Essen-

tially,

0 < a+b
√
x iff (b = 0 and a > 0) OR (b > 0 and (a > 0 or x >

a2

b2
)) OR (b < 0 and a > 0 and x <

a2

b2
).

�

We have talked about real closures of real fields, and now we want to discuss

real closures in the context of ordered fields (which are automatically real).

Lemma 20. a) If (F,<) is an ordered field, then we can get a real closure R of F

which extends the order.

b) RCF∀ is the the theory of ordered integral domains.

Proof of a). Construct (L,<) an extension of F which has square roots of all pos-

itive elements of F . To do this construction, we use transfinite induction: for each

successor ordinal add square roots and for each limit ordinal take unions.

Use the construction in Lemma 11 to construct a real closure R of L. The order

on R extends the order on F since every positive element of F is a square in R. �

Proof of b). It is enough to show that each model of RCF∀ embeds is a domain and

that each ordered domain embeds into a real closed field.

Consider A |= RCF∀. Then there is an embedding A ↪→ (F,<), where F is a real

closed field. So, A is a substructure of M and hence is a domain.

For the other direction, consider a domain (D,<). It embeds into it’s field of

fractions (F,<) where the order is given by the natural condition

a

b
> 0 iff a and b have the same sign.
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We can extend (F,<) to a real closure R. (D,<) embeds into R and thus is a

model of RCF∀. �

Much like the case for algebraically closed fields, the real closure of an ordered

field is unique. Moreover, it is unique up to a unique isomorphism. We have elected

to not give a proof as it is too technical.

Lemma 21. Let (F,<) be an ordered field. Let R0 and R1 be real closures of F

such that (Ri, <) is an ordered field extension of (F,<). Then, R0 is isomorphic

to R1 over F and the isomorphism is unique:

Thus we can talk about ”the” real closure of an ordered field.

Proof of i) RCF has algebraically prime models.

Let (D,<) |= RCF∀ with an embedding into a real closed field S. We may take

(F,<) to be the field of fractions of D, with an embedding i : A ↪→ F . Take R to

be the real closure of (F,<). Thus we get an embedding D ↪→ R. We claim that

this is the embedding we want.

The field F satisfies the universal property that if j : A ↪→ K is an embedding

into a field, then there exists h : F → K such that j = hi.

If we want a map from R into S, the image has to be algebraic over F . So

consider K = {α ∈ S : α is algebraic over F}. K is real closed by the (3) ⇔ (1)

direction of Theorem 15.

By Lemma 21, we have an isomorphism φ : R → K which fixes F . We can

compose this with the embedding K ↪→ S which gives us the required map.

(D,<) (F,<) R

K

S

i

φ

�

Proof of ii) RCF is model complete. Let F,K |= RCF, F ⊂ K, ā ∈ F b ∈ K, φ is

a quantifier free formula and suppose:

(2) K |= φ(b, ā)

We must show that there exists a b′ ∈ F such that F |= φ(b, ā).

To begin we note that since φ is quantifier free, we may write it in disjunctive

normal form:

(3) φ(x, ā) ≡
n∨
i=1

m∧
j=1

θij(x, ā)
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Where θij are ± atomic formulas. By (2), we know K |=
∧m
j=1 θij(x, ā) for some i,

hence it is sufficient to consider formulas of this form, namely, conjunctions of ±
atomic formulas.

We know that the only atomic formulas in Lor are:

(4) p(x, ā) = 0 p(x, ā) > 0

where p(x, ȳ) ∈ Z[X, Ȳ ]. We may write p(x) = p(x, ā) ∈ F [X], dropping the ā

argument.

Negations of atomic formulas can be rewritten as follows:

(p(x) 6= 0) ≡ (p(x) > 0 ∨ p(x) > 0)

(p(x) 6> 0) ≡ (p(x) = 0 ∨ −p(x) > 0)

and since each K must satisfy one the two formulas in each of the disjunctions,

we can restrict our attention to formulas of the form:

(5)

n∨
i=1

pi(x) = 0 ∧
m∧
i=1

qi(x) > 0

If pi 6= 0, b is algebraic over F , and hence b ∈ F as F is real closed i.e. has no

proper real closed extension. Then, letting b′ = b, we are done.

Hence we may consider formulas of this form:

m∧
i=1

qi(x) > 0

First note that each qi only changes signs at roots. We may list every root of each of

the qi’s in order r1 < · · · < rk for national convenience we let r0 = −∞, rk+1 =∞.

We know for some j = 0, ..., k

rj < b < rj+1

We note that the roots of these polynomials are elements of F . If j = 0 we may

take b′ := rj+1 − 1 ∈ F , and if j = k, we may take b′ := rk + 1. Otherwise, let

b′ :=
rj+rj+1

2 ∈ F . For each i, since qi only changes signs at roots, and qi(b) > 0,

we conclude that qi(b
′) > 0 completing the proof. �

4. Resolution of Hilbert’s 17th

Since we have shown that RCF has quantifier elimination, it is model-complete.

The proof of Hilbert’s 17th problem is an immediate consequence of model com-

pleteness and the ordering theorems we proved for real fields. For the reader’s

convenience, we restate the problem:

Theorem 22 (Hilbert’s 17th problem). If f is a positive semidefinite rational

function over a real closed field F , i.e. f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ F ,

then f is a sum of squares of rational functions.
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Proof. Suppose that f(X1, . . . , Xn) is a positive semidefinite rational function over

F that is not a sum of squares. By the ordering theorem, there is an ordering of

F (X1, . . . , Xn) so that f is negative. Let R be the real closure of F (X1, . . . , Xn)

extending this order. Then

R |= ∃v1, . . . , vn f(v1, . . . , vn) < 0

because f(X1, . . . , Xn) < 0 in R. By model-completeness:

F |= ∃v1, . . . , vn f(v1, . . . , vn) < 0,

contradicting the fact that f is positive semidefinite. �
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