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1 Preliminaries

Throughout this article, we will have k as our base field. To make life easier, we will assume
that char(k) 6= 2, 3. We will refer to projective points by [x : y : z].

Definition 1.1. An elliptic curve E/k is a smooth projective curve of genus one with a
distinguished k−rational point.

Concretely, this boils down to the following (projective) equation:

y2z = x3 +Axz2 +Bz3

or equivalently we have the following affine equation (known as the Weierstrass form):

y2 = x3 +Ax+B

where A3 + 27B2 6= 0 to ensure smoothness.
Here [0 : 1 : 0] is the point at infinity and the distinguished point.

We can in fact make E into an abelian variety by giving it a group structure where the
distinguished point acts as the identity element, 0. The group operation can (informally) be
described by:

Any three points on a line sum to zero. We may need to double or triple count tangent
points appropriately.

While it is easy to see that the binary operation thus defined is commutative, proving associa-
tivity requires some work. Using the above description, one can derive an explicit formula for
the sum in terms of rational functions of the two points, however, there will be some casework
involved.
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2 Isogenies

We now proceed to define isogenies, which are ”morphisms” of elliptic curves.

Definition 2.1. An isogeny φ : E1→ E2 of elliptic curves is a surjective morphism of curves
that induces a group homomorphism E1(k̄)→ E2(k̄).

We will now try to expand a bit on the above definition and give a more concrete description
of isogenies.

Definition 2.2. Let C/k be a plane projective curve give by a homogeneous, non-constant
f(x, y, z) which is irreducible in k̄[x, y, z]. Then the function field k(C) is the set of equiva-
lence classes of g/h where g, h are homogeneous polynomials of the same degree with h /∈ (f)
and the equivalence relation g1/h1 g2/h2 if g1h2 − g2h1 ∈ (f)

The elements of k(C) act as functions on projective points as long as the denominator does
not evaluate to 0. However, note that even if h(P ) = 0, there could exist other elements in
the equivalence class of g/h such that the denominator does not evaluate to 0 at P .

Definition 2.3. Let C1 and C2 be plane projective curves given by f1 and f2 respectively.
Then, a rational map φ : C1 → C2 is a triple of homogeneous polynomials ψx, ψy, ψz ∈
k[x, y, z] of the same degree such that at least one of them is not in (f1) and f2(ψ1, ψ2, ψ3) ∈
(f1). The rational map φ is defined at P if not all ψ’s are zero and in this case, [ψ1(P ) :
ψ2(P ) : ψ3(P )] ∈ C2(k).

A morphism is a rational map defined at every point P . Luckily for us, for smooth curves,
every rational map is a morphism and in fact, every morphism is either surjective or constant.
This sheds more light into the definition of an isogeny. In addition, if the rational map
preserves the distinguished point, it automatically becomes a group homomorphism.

So, an isogeny is a non-constant rational map which preserves the distinguished point.

Example 2.4. P 7→ −P is an isogeny

Example 2.5. P 7→ P + P . . .+ P = nP is an isogeny

Example 2.6. If char(k) = p, then the Frobenius map πE : [x, y, z] 7→ [xp : yp : zp] is an
isogeny

While we have somewhat simplified the notion of an isogeny, one can do even better and
give a much simpler form using the Weierstrass form for Elliptic curves. We will call this the
standard form of an isogeny.

Theorem 2.7. Let E1 : y2 = f1(x), E2 : y2 = f2(x)andα : E1 → E2 be an isogeny. Then we
can represent it using rational functions of the form:

α(x, y) =

(
u(x)

v(x)
,
s(x)

t(x)
y

)
where u, v, s, t ∈ k[x] and u and v are coprime and so are s and t. Additionally, v3|t2 and
t2|v3f1. In particular, v and t have the same roots.
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The last two lines are important, and are essential in proving the following corollaries:

Corollary 2.8. [x : y : 1] is in the kernel of α iff v(x) = 0. The only other element in the
kernel is 0.

Corollary 2.9. ker(α) is a finite subgroup of E1(k)

We now move on to define two invariants of isogenies which will serve us well in the future.

Definition 2.10. Let α(x, y) = (u(x)
v(x) ,

s(x)
t(x) y) be an isogeny in standard form. The degree of

α is deg α := max(deg u, deg v). α is called separable if the derivative of u(x)
v(x) 6= 0 and

otherwise we say that is inseparable.

To justify why this nomenclature is warranted, we see that this definition of degree and
separability coincide with the degree and separability of the field extension α∗ : k(E2) →
k(E1).
It is easy to see that when char(k) = 0 every isogeny is separable. So, the inseparability
occurs only in characteristic p, and in fact, it arises solely due to the Frobenius isogeny. This
leads us to the following lemma:

Lemma 2.11. In characteristic p > 0, every isogeny can be split into the following form

α = αsep ◦ πn

where αsep is a separable isogeny. This gives us that deg α=pndeg αsep.

We call the degree of αsep the separable degree of α and denote it by degs α and we call the
pn the inseparable degree and denote it by degi α.

Theorem 2.12. The order of the kernel of an isogeny is equal to its separable degree.

This immediately leads to a couple of corollaries:

Corollary 2.13. Every purely inseparably extension has trivial kernel

Corollary 2.14. (Separable/Inseparable) degrees are multiplicative.

Of course, this follows from vanilla field theory as well.
When α : P 7→ nP then the kernel of α is called the n-torsion subgroup E[n] and we denote
α by [n]. This is going to be crucial in the definition of a supersingular elliptic curve.

Theorem 2.15. Let char(k) = p, then, for each prime l, we have

E[le] =

{
Z/leZ⊕ Z/leZ, if l 6= p
Z/leZ or 0, if l = p

}
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3 The Endomorphism Algebra

We define Hom(E1, E2) to be the union of isogenies and the zero morphism. This makes
Hom(E1, E2) into a group under point-wise addition. For α ∈ Hom(E1, E2), we also have
that [n]◦α = α◦[n] and this indicates that this would impose a ring structure on Hom(E,E) =
End(E) and indeed, it does. Also, Z sits inside it as [n]. In fact, if we are in char p > 0
situation, then Z[πE ] lies in the center of End(E) since p(xr1, . . . , x

r
n) = p(x1, . . . , xn)r and

hence πE ◦ α = α ◦ πE for any endomorphism α. Additionally, End(E) has no zero divisors
by virtue of Corollary 2.9

For any isogeny α : E1 → E2 we have the dual isogeny α̂ : Ê2 = E2 → E1 = Ê1. This has the
unique property that α̂ ◦ α = [deg α] = [deg α̂]. We have that [n̂] = [n] =.

Lemma 3.1. ˆ: End(E)→ End(E) is an involution (an anti-homomorphism of order 2).

Lemma 3.2. Let α ∈ End(E). Then α and α̂ are solutions to the characteristic equation

x2 − (tr α)x+ deg α

where tr α := α+ α̂.

We now come to the question of reducing endomorphism to the torsion subgroups. This is
useful invariant which helps us with differentiating endomorphisms.
Since α ∈ End(E) commutes with [n], α preserves E[n] and thus restricts to group endomor-
phism of E[n] which we denote by αn. With appropriate basis for E[n] and n coprime to p,
we can view αn as a 2× 2 matrix, by virtue of Theorem 2.15.

Theorem 3.3. Let n be coprime to char(k). Then,

tr α ≡ tr αn mod n

deg α ≡ det αn mod n

This theorem is powerful enough to prove Hasse’s Theorem (#E(Fq) = q + 1− t).

Definition 3.4. The endomorphism algebra of E, End0(E) := End(E)⊗Q

Since we are tensoring with Q, every element can be written as pure tensor. End0(E) is a
Q-algebra, and like End(E), it has no zero divisors. We denote α ⊗ r by rα. We would like
to extend the notions for End(E) to End0(E), in particular the dual, and thus we define it
to be r̂α = rα̂. Note that this is constant on Q.

Definition 3.5. The reduced norm Nα := αα̂ and the reduced trace Tα := α+ α̂

The trace is a Q-linear map and positive definite. The norm is multiplicative and respects
duality and is positive definite. This shows that End0(E) is a division algebra.

4



Before we move on to a big theorem, we will need a definition:

Definition 3.6. A quaternion algebra over k is a k−algebra that has a basis of the form
{1, a, b, ab} with a2, b2 ∈ k∗ and ab = −ba.

And finally, what all of this has been leading up to:

Theorem 3.7 (Classification of Endomorphism Algebras).
Let E/k be an elliptic curve. Then End0(E) is isomorphic to one of:

• Q

• an imaginary quadratic field Q(a) with a2 < 0.

• a quaternion algebra Q(a, b) with a2, b2 < 0.

Given this, one can prove that End(E) is a free Z-module of rank 1, 2 or 4 respectively. In
the second or third case, E is said to have complex multiplication.

If char(k) = 0, then only the first two cases can occur. If char(k) > 0, then only the last two
case can occur. This can be proves using the facts in the following section.
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4 Supersingular Elliptic Curves

For this section we will let char(k) = p > 0. From Theorem 2.15, recall that E[p] is either
Z/pZ or 0. In the first case, E is called ordinary and in the second case, E is called super-
singular as they are quite rare. We will try to give some characterizations of supersingular
curves in this section.

Theorem 4.1. If α : E1 → E2 is an isogeny, then E1 is supersingular iff E2 is.

Theorem 4.2. E/Fq is supersingular iff tr πE ≡ 0 mod p

Using the above theorem and Hasse’s theorem, one can see that out of the 4
√
p possibilities

for tr πE , only one of them corresponds to supersigular curves, which makes them quite rare.

We have already seen the j-invariant for modular forms, so lets work with the analagous
j-invariant for elliptic curves.

Definition 4.3. The j-invariant of an elliptic curve E : y2 = x3 +Ax+B is

j(E) = j(A,B) = 1728
4A3

4A3 + 27B2

As it will turn out, the j-invariant is a powerful invariant of elliptic curves.

Theorem 4.4. For every j0 ∈ k, there is an elliptic curve E/k such that j(E) = j0.

We now give a strong and surprising! (to me, at least) condition to check if two elliptic curves
are isomorphic.

Theorem 4.5. Elliptic curves E1 and E2 over k are isomorphic iff A1 = µ4A2 and B1 = µ6B2

for some µ ∈ k∗.

Coming back to the j-invariant, note that if A = 0, then j(A,B) = 0 and if B = 0, then
j(A,B) = 1728. All of this leads to the following:

Theorem 4.6. Let E1 and E2 be elliptic curves over k. They are isomorphic over k̄ iff
j(E1) = j(E2). Furthermore, j(E1) = j(E2) implies that there is a field extension K/k of
degree 6, 4 or 2 (in the cases j(E1) = 0, 1728 or neither respectively) such that E1 and E2 are
isomorphic over K.

Note that elliptic curves being isomorphic over k̄ is a weaker condition than being isomorphic
over k̄.

Lemma 4.7. j(E) is in Fp2

Finally, here are some equivalent conditions for supersingular curves -

Theorem 4.8. The following are equivalent

• E is supersingular.

• The dual of the Frobenius map is purely inseparable.

• tr πE ≡ 0 mod p

• End(EF̄q
) is a quaternion algebra.

Of course, if any of the above conditions is false, then E is ordinary.

6


