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0 Introduction

Characteristic classes lie at the intersection of geometry and topology. Essentially, they are
natural cohomology classes of vector bundles and thus give algebraic invariants of geometry.
They can also be used to �gure out information about the orientaion and spin structure on
manifolds (though we will not go into that).

There are multiple approaches to characteristic classes:

• One can de�ne them axiomatically à la Grothendieck

• The homotopical approach is to de�ne them using classifying spaces.

• The geometric approach (the one we will use) uses connections to de�ne said classes.

One of the the neat parts of the geometric approach is that the characteristic class thus
de�ned is independent of the connection chosen on the vector bundle, as one would expect
if we want to do something truly topological.

We'll develop the theory for real vector bundles and give a brief note regarding the complex
case and Chern classes. There is a more general theory for principal G-bundles, which we'll
will state.

A good reference for the complex case is the appendix of Milnor and Stashe�'s Characteristic
classes. This article mainly follows Loring Tu's Di�erential Geometry.
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1 Vector Bundles

Everything in sight will be smooth. We will denote C∞(M) by F .

De�nition 1.1. A vector bundle of rank n over R is a surjective smooth map π : E → M
such that

i) For every p ∈M, Ep := π−1(p) is a vector space of rank n

ii) For every p ∈ M , there exists an open U ⊂ M such that there is a �ber-preserving
di�eomorphism φU : π−1(U)→ U × Rn that restricts to a linear isomorphism on each �ber.

We call M the base space and E the total space. There are a bunch of examples familiar to
us:

Example 1.1. The trivial bundle M × Rn →M .

Example 1.2. The tangent bundle TM →M and the cotangent bundle T ∗M →M

Essentially, a vector bundle is a family of vector spaces parametrized by a manifold M . We
naturally want to talk about maps of vector bundles.

De�nition 1.2. A bundle map between two vector bundles πE : E → M and piF : F → N
is a pair of smooth maps (φ : E → F, φ̄ : M → N) such that φ̄ ◦ πE = πF ◦ φ and φ restricts
to a linear map on the �bers.

We will often encounter the case where M = N and φ̄ = idM . A section s : M → E of a
vector bundle π : E → M is a smooth map such that π ◦ s = idM . One should think of a
section as picking out a choice of elements in the �bers in a smooth manner. We can also
talk about sections over an open subset U of M .

Example 1.3. Sections of TM →M are vector �elds, which we denote by X(M) = Γ(TM).
We also have the vector bundle

∧k T ∗M →M , whose sections are k-forms.

The set of sections Γ(E,U) is naturally a vector space over R, as it inherits the operations
from the �bers. Moreover, it is a module over C∞(U), where a function f acts by point-wise
multiplication.

We can also see that a map of bundles φ : E → F over M induces a map on the sections
φ# : Γ(E,M) = Γ(E) → Γ(F ) by composition. This is in fact an F -linear map. One can
show that this is a bijection {bundle maps E → F} ↔ {F − linear maps Γ(E) → Γ(F )}.
To see that # is surjective, we just de�ne a bundle map �bre-wise using the map on the
sections. Injectivity follows from the fact that for any p ∈ M, e ∈ Ep, there is a section s
such that s(p) = e, which can be constructed using bump functions.

De�nition 1.3. A frame for a vector bundle of rank n for an open set U in the base space
is a collection of sections e1, . . . , en over U such that e1(p), . . . , en(p) is a basis of the �ber of
p ∈ U .

A frame over the base space exists if and only if the bundle is trivial. In particular, there
always exists a frame over a trivializing open set.
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2 Connections on Vector Bundles

De�nition 2.1. A connection on a vector bundle E →M is a map

∇ : X(M)× Γ(E)→ Γ(E)

such that for all X ∈ X(M) and s ∈ Γ(E), we have
i) ∇ is F -linear in the �rst variable and R-linear in the second.
ii)

∇X(fs) = (Xf)s+ f∇Xs

for all f ∈ F . That is,

∇X(fs) = (df)(X)s+ f∇Xs.

Slightly abusing notation, we can rewrite it as

∇(fs) = df · s+ f∇s.

In particular, (a�ne) connections on manifolds are just connections on TM →M .
We can de�ne a connection on a trivial bundle by specifying that it is 0 at a particular frame
and then extending linearly by the Leibniz Rule (ii above).

Analogous to the case of a�ne connections, we can show that every vector bundle has a
connection. To do this, we de�ne it on trivializing open sets (as above), and then extend
to the bundle by patching them up using a partition of unity subordinate to the cover of
trivializing open sets. Note that if ∇i are connections, then so is

∑
λi∇i where

∑
λi = 1.

Curvature for connections on vector bundles is pretty similar to the a�ne case:

R(X, Y ) = ∇X∇Y +∇Y∇X −∇[X,Y ].

De�nition 2.2. A Reimannian metric on a bundle π : E → M is an inner product on
each �ber Ep, which is smooth in the sense that 〈s, t〉 is a smooth map M → R for any two
sections s, t ∈ Γ(E).

In particular, a Riemannian metric on M is just a Reimannian metric on TM → M . A
bundle with a metric is called a Riemannian bundle. Every bundle can be imbued with a
metric, and the proof of this is similar to the proof about connections above.

A connection ∇ on a Riemannian bundle is said to be compatible with the metric if for all
X ∈ X(M), s, t ∈ Γ(E)

X〈s, t〉 = 〈∇Xs, t〉+ 〈s,∇Xt〉.
The connection on a trivial bundle de�ned above is compatible with the natural metric on
the bundle.

Similar to the previous case, every Riemannian bundle has a compatible metric. The key
fact needed to prove this is that an F -linear sum of compatible connections is a compatible
connection when the sum of the coe�cients is 1.
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Consider some connection ∇ on π : E → M . Let U be a trivializing open set with a frame
e1, . . . , en. Then, we can write ∇ locally as

∇Xej =
∑

ωij(X)ei

We call ω = [ωij] the connection matrix of ∇ with respect to (U, (e1, . . . , en)). Note that each
entry in the matrix is a 1-form

Similarly, we can look at the curvature R(X, Y ) locally. We get a matrix Ω = [Ωi
j] of 2-forms

which we call the curvature matrix.

Theorem 2.1.

Ωi
j = dωij +

∑
k

ωki ∧ ωkj

More succinctly,
Ω = dω + ω ∧ ω.

The proof is fairly straightforward and just involves expanding the de�nitions and rewriting.

We obtain the following corollary by di�erentiating both sides.

Corollary 2.1 (The second Bianchi Identity).

dΩ = Ω ∧ ω − ω ∧ Ω

.

We can rewrite the de�nition of the connection matrix as (using matrix notation):

∇e = eω.

Suppose we have a di�erent frame ē for U . We would like to know what happens to the
connection matrix and the curvature matrix under this change of frame.

Let a = [akl ] be the change of frame matrix from e to ē. Then, the corresponding curvature
and connection matrices are:

ω̄ = a−1ωa+ a−1da.

Ω̄ = a−1Ωa.

Where the di�erential operator d acts entry-wise on a.

We now come to the question of building a connection using connection matrices. Suppose
we have a trivializing cover (Uα, e

α) of M with some frames and corresponding connection
matrices ωα. Then, they form a connection on the whole bundle i� on each pairwise inter-
section Uα ∩ Uβ the change of frame identity is satis�ed for ωα and ωβ.
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This helps us with constructing connections on bundles where we only have local information.
Suppose we have a bundle π : E → M and a map f : M → N . Then the pullback bundle
over N is de�ned by

f ∗(E) = {(n, e) ∈ N × E : f(n) = π(e)}.

and the bundle map is just projection onto N . Suppose we have a connection ∇ on π. Now
that we can work with local information, we can pull back ωα as its entries are just 1-forms
and this gives us connection matrices which satisfy the compatibility condition above. Thus
we can pull back a connection to the pullback bundle.

Let's move on to the setting of Riemannian bundles again. What restrictions does a compati-
ble connection impose on the connection matrices? Does every family of connection matrices
satisfying the above property come from a compatible connection? The answer is quite nice.

Theorem 2.2. Let ∇ be a connection on a Riemannian bundle π : E →M . Then,

(i) If the connection is compatible then the connection matrix ω for any open set U with
an orthonormal frame is skew-symmetric.

(ii) If for all p ∈ M , we have a trivializing open set U with an orthonormal frame such
that ω is skew-symmetric, then ∇ is compatible with the metric.

Proof. (i) For any X ∈ X(M) and i, j,

0 = X〈ei, ej〉 = 〈∇Xei, ej〉+ 〈ei,∇Xej〉 = 〈ωki (X)ek, ej〉+ 〈ei, ωkj (X)ek〉 = ωji + ωij.

(ii) It is enough to show that the connection is compatible locally. Let ω be skew-symmetric
and s = aiei, t = bjej. Skipping some of the steps, we have

X〈s, t〉 = X(
∑

aibi) =
∑

(Xai)bi +
∑

(ai(Xbi).

〈∇Xs, t〉 =
∑

(Xai)bi +
∑

aiωji (X)bi.

〈s,∇Xt〉 =
∑

(Xbi)ai +
∑

biωji (X)aj.

=
∑

(Xbi)ai +
∑

aibjωij(X)

Adding them up,

〈∇Xs, t〉+ 〈s,∇Xt〉 =
∑

(Xbi)ai + (Xai)bi = X〈s, t〉.

Theorem 2.1 tells us that if the connection matrix is skew-symmetric, then so is the cur-
vature matrix.
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3 Characteristic classes

We've seen that Ω̄ = a−1Ωa. Thus if we de�ne some function (using Ω) that is invariant
under conjugation by elements of GL(R, n), then that function will be independent of the
the frame chosen to represent the connection ∇. This is our preliminary strategy to de�ne
characteristic classes.

De�nition 3.1. Let X = [xij] be a matrix of indeterminates. Let P (X) be a polynomial
over gl(R, n) = Rn×n with variables from X. Then P (X) is said to be invariant if for all
A ∈ GL(R, n)

P (X) = P (A−1XA).

It is in fact enough if the above holds for all real matrices X. More generally, this implies
that the identity holds for all matrices with entries in some R-algebra A.

Example 3.1. det(X) and tr(X) are invariant polynomials.

Example 3.2. Let det(λI +X) =
∑
λifn−i(X). Then each fi is an invariant polynomial.

Example 3.3. The polynomials σk(X) := tr(Xk) are invariant polynomials.

Let P be an invariant polynomial of degree k. Consider any p ∈M . Let

A =
⊕
i

2i∧
(T ∗pM).

Then,
P (Ω̄p) = P (a−1(p)Ωpa(p)) = P (Ωp).

Thus, P (Ω) ∈ Ω2k(U) is independent of the frame. Hence we can unambiguously de�ne
P (Ω) as a global 2-form on M as we know it is locally well-de�ned and there's no issue on
intersections.

The following theorem is the heart of this article:

Theorem 3.1. Let π : E →M be a vector bundle of rank n and ∇ be a connection on this
bundle. Suppose we have an invariant homogeneous polynomial P of degree k on gl(R, n).
Then,

(i) The 2k-form P (Ω) is closed.

(ii) [P (Ω)] ∈ H2k(M) is independent of ∇.

We have the following algebra homomorphism

cE : Inv(gl(R, n))→ H∗(M)

P 7→ [P (Ω)]

This is known as the Chern-Weil homomorphism. Such a [P (Ω)] is known as a characteristic
class.
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Let's start with the proof of (i). We'll need the following facts.

Lemma 3.1. ∑
i

(−1)ifiσk−i = 0

Which can be used to prove

Theorem 3.2.

Inv(gl(R, n)) = R[f1, . . . , fn] = R[σ1, . . . , σn].

Thus, it is enough to show that [σk(Ω)] is a closed form.

Proof of Theorem 3.1 (i). Let e be some frame for an open set U and let ω and Ω be the
respective connection and curvature matrices. Then,

d(σk(Ω)) = tr(d(Ωk)).

Applying the second Bianchi identity,

d(σk(Ω)) = tr(Ωk ∧ −ω ∧ Ωk) = tr(Ωk ∧ ω)− tr(ω ∧ Ωk) = 0.

Let J be an open interval in R. We can consider a smooth family of k-forms ωt. We de�ne
the derivative of this wrt t to be (

dωt
dt

)
p

= ω̇t =
d

dt
ωt,p.

We similarly de�ne integrals for a smooth family of forms. We can extend this de�nition to
a matrix of forms, just by doing it entry-wise.

Lemma 3.2. Let ω and τ (suppressing the subscript) be matrices of smooth families of
di�erential forms. Then

(i) d
dt

(tr ω) = tr(dω
dt

)

(ii) d
dt

(ω ∧ τ) = ω̇ ∧ τ + ω ∧ τ̇

(iii) d
dt

(dω) = d( d
dt

(ω))

(iv)
∫ b
a
dω dt = d(

∫ b
a
ω dt)

We will need the above lemma to �ll in the gaps of the proof below.
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Sketch of proof of Theorem 3.1 (ii). Let ∇0 and ∇1 be two connections connections on
π : E → B. We then have a family of connections

∇t = t∇0 + (1− t)∇1.

The key (somewhat non-trivial) fact needed for this proof is

d

dt
(tr Ωk

t ) = d(k tr(Ωk−1
t ω̇t))).

Integrating both sides and simplifying, we get

tr(Ωk
1)− tr(Ωk

0) = d

∫ 1

0

k tr(Ωk−1
t ω̇t) dt.

Thus [tr(Ωk
1)] = [tr(Ωk

0)]. We conclude that the characteristic class is independent of the
connection.

It is a consequence of Theorem 2.2 that the characteristic classes wrt to any odd degree
invariant polynomial is 0.

We claimed earlier that characteristic classes are natural. What we mean by that is that it
is a natural transformation c from V ectn (which associates to a manifold the isomorphism
classes of rank n vector bundles over it) to H∗. What this boils do is that c commutes with
pullbacks. That is, given a map of smooth manifolds f : M → N ,

cN(f ∗E) = f ∗cM(E).

3.1 Pontrjagin Classes

De�nition 3.2. The classes pk(E) = [f2k(
i
2π

Ω)] ∈ H4k(M) are called Pontrjagin classes.

They give us information about all the characteristic classes since they generate Inv(gl(R, n)).
The factor of i

2π
ensures that these classes behave nicely when integrated.

The total Pontrjagin class of E is de�ned to be

p(E) = det

(
I +

i

2π
Ω

)
= 1 + p1 + · · ·+ pbn/2c.

Suppose now that M is compact and orientable and E has dimension 4m for some m ∈ N.
Let ai be numbers such that

∏
paii is a cohomology class of degree 4m. Then the number∫

M

∏
paii

is called the Pontrjagin number of E. If E = TM , then this is a topological invariant of M.
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3.2 Orientation on a vector bundle and Euler Classes

An orientation on a vector bundle π : E →M should be though of as a smooth assignment
of orientation to each �ber. More precisely, it is an equivalence class of sections of the line
bundle

∧nE (the �ber of p here is the collection of orientations on Ep as a vector space).
Two sections s and t are equivalent if there exists a positive function f such that s = ft.
For this section, we will only consider frames which are compatible with the orientation on
the vector bundle. We call these positively oriented frames.

Let π : E → M be an oriented Riemannian bundle with a compatible connection ∇. For
positively oriented frames, the change of frames matrix is special orthogonal.

In this setting, we'd like to alter our de�nition of a characteristic class. We now want P to
be a polynomial which is invariant under conjugation by elements of SO(n). We call such a
polynomial Ad(SO(n))-invariant.

What are the generators of Inv(so(n))? For n odd, it is generated either by {σi} or {fi}.
For n even, we need an additional generator: the pfa�an, which we denote by Pf(X) (which
we know is the square root of the determinant).

The class e(E) = [Pf( 1
2π

Ω)] ∈ H2m(M) is called the Euler class. As before, this is a closed
global form whose cohomology class is independent of the connection.
We'd like to call ∫

M

Pf

(
1

2π
Ω

)
the Euler number. But does it agree with the traditional notion of the Euler characteristic
χ(M)? Indeed, they are equal when the bundle in question is the tangent bundle, and that
is the statement of the generalized Gauss-Bonnet Theorem.

3.3 Chern Classes

The setting here is of complex vector bundles and Hermitian metrics. The de�nitions and
the theory are analogous. We now want our polynomials to be invariant under conjugation
by elements of GL(C, n). Then, we get

det

(
I +

i

2π
Ω

)
= 1 + c1(E) + · · ·+ cn(E).

We call ci(E) the ith Chern class of E.
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4 Principal G-Bundles

We've seen multiple notions of characteristic classes which vary depending on the group
action we want our polynomials to be under. This begs the generalization to case of general
lie groups.

De�nition 4.1. Let G be a group. Then a (smooth) principal G-bundle is a map π : P →
M that is a �ber bundle with a smooth, free right-action of G on P such that the local
trivializations are G-equivariant. That is, given a smooth free action on P , we need

(i) π is surjective and π−1(p) ∼= G.

(ii) For each p ∈M , there is an open U containing p with homeomorphisms

φU : π−1(U)→ U ×G

such that φU(x) · g = φU(xg)

Let G now be a Lie group with lie algebra g. We want to generalize the notion of a con-
nection. This is a bit complicated, but essentially it is a smooth g-valued 1-form satisfying
some equivariance conditions. In this case, they are called Ehresmann connections.

Given such a connection ω. The curvature is the g-valued 2-form

Ω = dω +
1

2
[ω, ω].

This brings us to the �nal theorem, which is a generalization of Theorem 3.1.

Theorem 4.1. Let Ω be the curvature with respect to a connection ω on a principal G-bundle
π : P →M and f be an Ad(G)-invariant polynomial of degree k on g. Then,

(i) There exists a 2k-form Λ on M such that f(Ω) = π∗(Λ).

(ii) Λ is a closed form.

(iii) The cohomology class [Λ] is independent of the connection.

As before, we get a homomorphism

w : Inv(g)→ H∗(M)

f 7→ [Λ]

which we call the Chern-Weil homomorphism.
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